ka | en
TSU

მონაცემთა მოძიების მეთოდები SQL- ის რესურსების გამოყენებით

ავტორი: ჯულია შავკაციშვილი
საკვანძო სიტყვები: SQL Server Data mining, k-საშუალოს კლასტერზაცია, გადაწყვეტილებათა მიღების ხეები.
ანოტაცია:

SQL Server, ლიდერი პროგნოზირებად ანალიტიკაში 2000 წლიდან, უზრუნველყოფს მონაცემთა მოძიებას ანალიზში. SQL Server Data Mining წარმოადგენს ინტეგრირებლ პლატფორმას ანალიტიკაში, რომელიც მოიცავს მონაცემთა წმენდას და მომზადებას, მანქანურ სწავლებას და ანგარიშგებას. SQL Server Data Mining მოიცავს სხვადასხვა ალგორითმებს, მათ შორის EM (მონაცემთა მაქსიმიზაციის ალგორითმი) და K-საშუალოს კლასტერიზაციის მოდელებს, ნეირონულ ქსელებს, ლოჯისტიკურ და ხაზოვან რეგრესიას, ბაიესის კლასიფიკატორებს. ყველა მათგანს აქვს ინტეგრირებული ვიზუალი, რაც გვეხმარება მოდელების შემუშავებაში, დახვეწასა და შეფასებაში. დღეისათვის არსებობს მრავალი ალგორითმი და მეთოდი, რომელიც გამოიყენება მონაცემთა ანალიზისთვის. ძირითადი პრობლემა სპეციფიური პრობლემის შემთხვევაში მონაცემთა ამოღებისათვის შესაფერისი ალგორითმის პოვნაა. ნაშრომში გამოკვლეული და გაანალიზებულია ის ფაქტორები, რომლებიც ზეგავლენას ახდენს შესაბამისი ალგორითმის შერჩევაზე. სამაგისტრო ნაშრომი შეიძლება სასარგებლო იყოს სამეცნიერო მუშაკებისათვის, პედაგოგებისათვის, დოქტორანტებისათვის, მაგისტრანტებისათვის, ბაკალავრებისათვის და უმაღლესი სასწავლო დაწესებულებების სტუდენტებისათვის. მისი ძირითადი დასკვნები შეიძლება სხვადასხვა ორგანიზაციების შემდგომი კვლევების ჩატარებისას, აგრეთვე პედაგოგიურ პრაქტიკაში იქნეს გამოყენებული.


მიმაგრებული ფაილები:

მონაცემთა მოძიების მეთოდები SQL- ის რესურსების გამოყენებით [ka]
მონაცემთა მოძიების მეთოდები SQL- ის რესურსების გამოყენებით [en]

Web Development by WebDevelopmentQuote.com
Design downloaded from Free Templates - your source for free web templates
Supported by Hosting24.com